
Wan-chun Liu
Complex behaviors, such as speech or language learning, develop through a protracted process of interaction between genes and environment. How does this nature-nurture interplay shape the development of idiosyncratic learning strategy, cognitive function, and associated brain mechanisms? My research aims to investigate the genetic and environmental influence on vocal learning, communication, and its disorders. My lab uses a combination of evolutionary, behavioral, molecular genetic, and neuroanatomical approaches to examine these questions. In my lab, songbirds are used as an animal model for a comparative approach due to the many parallels between vocal learning in songbirds and language learning in humans. These parallels provide songbirds a great model to manipulate the genetic and neural mechanisms that underlie vocal communication and its brain circuitry.
For genetic study, we use various genetic tools to identify neural circuits and manipulate genes of interest in live animals, and we will create songbird transgenesis by inserting mutated or modified foreign genes into the songbird genome to determine the role of those genes on the development of vocal communication or language-associated disorder. For example, we are investigating the neural and genetic basis of speech disorders and social dysfunction caused by neurodegenerative disorders or developmental disorders.
To identify environmental influence on song circuit development, my lab investigates the effect of prenatal or early postnatal experience on the development of vocal communication and brain circuits. For example, how the prenatal or postnatal social environment affect later development of vocal learning, social cognition, and brain circuit plasticity.
Students in my lab will have a great opportunity to explore and integrate different scientific disciplines from behavior, neuroanatomy, to molecular genetics.